

A framework to integrate human factor-related elements of chemical exposure in the workplace

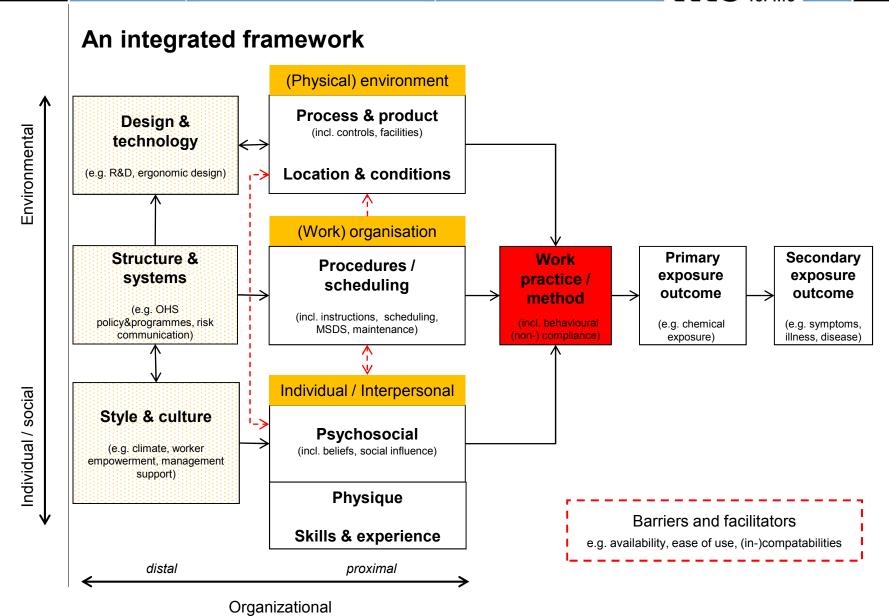
Henk Goede, Laurens Clignett, Erik van Deurssen, Tim Meijster

Content

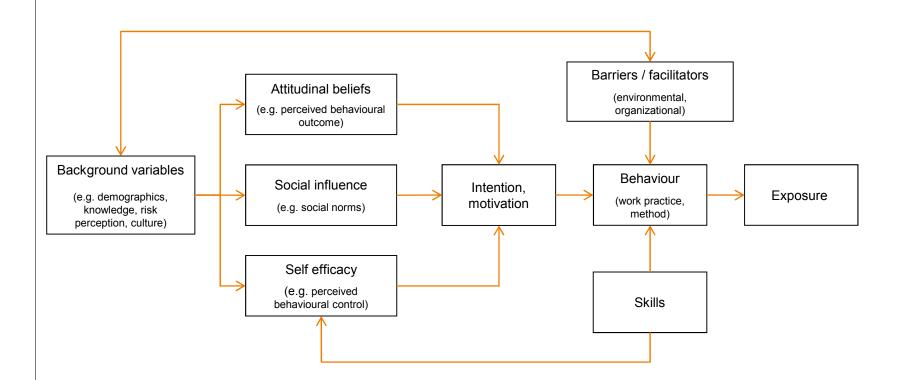
- Introduction
- Aim
- Framework
- Intervention study (baseline measurement)
 - background
 - method
 - results
- Conclusions

Introduction

- Much attention for technical control measures in chemical exposures
- Observational and real-time exposure data have shown behaviour to be an important aspect of (peak) exposures (Meijster et al, 2008)
- Very little known about relationship between behavioural factors and chemical exposure
- Evidence of behavioural factors will help us to plan intervention or behaviour change strategies


Aim

- Determine the relationship between behavioural factors, behaviour and (inhalation) chemical exposure
- Propose an intervention strategy based on the outcome of data analysis & other evidence



Behavioural models

Intervention study

- background

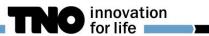
- Dutch study (TNO project + PhD project) → includes intervention mapping, health impact assessment, cost-benefit analysis
- Multidimensional study
 - overall aim to reduce disease burden
 - using broad scope of interventions (human, organisation, technology)
 - → determine the most effective combination of control strategies
- Two industries building industry (alpha-quartz / crystalline silica) and car repair industry (isocyanates)

Intervention study (human factor)

- method

- Use of framework during pilot study
 - identify important behaviours related to dust exposure
 - identify important barriers/facilitators of behaviour
- Data collection
 - development of worker / management questionnaires, checklists
 - detailed observations of individual workers
 - dust exposure measurements & analysis
- Database development
- 1st preliminary analysis of baseline study
 - regression analysis

Behaviour in the building industry

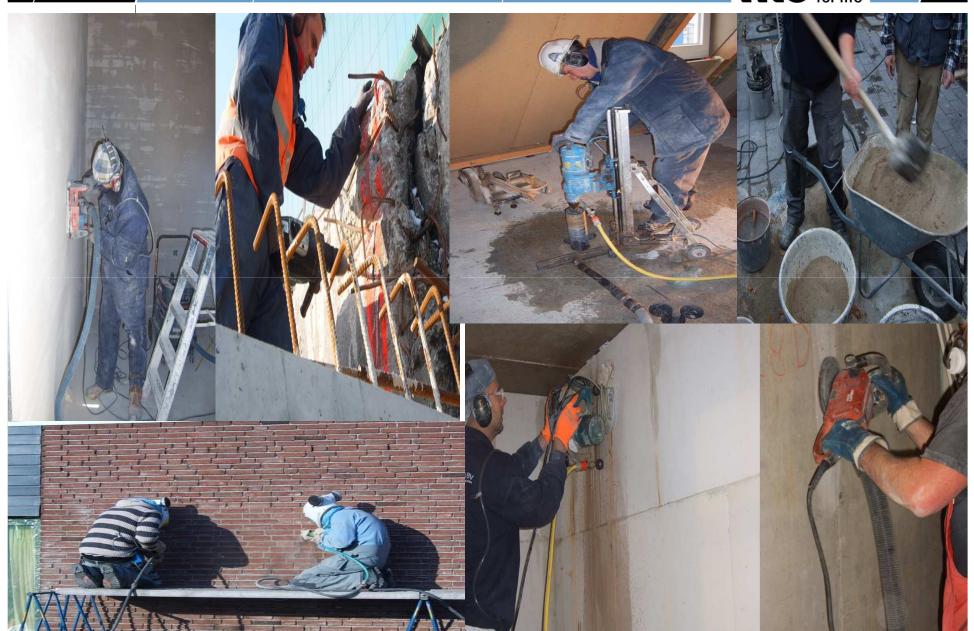

- best & poor practices

Behaviour	Determinants*	Examples
Task- and process	Timing & sequence Carefulness Worker orientation	Closing lids on mixers Debagging Orientation to plumes, above shoulder height
Control measure	Technical controls Personal controls	Tool exhaust ventilation, wetting systems Respirators
Housekeeping	Cleaning methods	Compressed air, vacuum cleaners, wet / dry methods
Personal hygiene		Hand washing, washing clothes

^{*} Include the effectiveness of use or correct use, frequency of use, maintenance

Barriers & facilitators

Scale	Issues to consider	Examples
Environment	Availability / accessibility	Connections for water systems
(vs individual &	Compatibility issues	Ease of use of tool extraction
organisation)		Time pressure
	Maintenance	Replacing filters on ventilation systems
Training	Availability, frequency, quality	Periodical training, including best practices, interactive
Instructions, information	Availability, frequency, quality	Safe work practices, MSDS
Culture		Management involvement, support


Results (1)

	N	Range (min-max)	Mean (SD)	%
Participants Full-shift dust measurements Companies	102 125 9			
Demographics - Gender (male) - Smoking (yes) - Country (education NL) - Education (secondary school +) - Professional training job (yes) - Job experience (yrs)		1-44	16(11)	100 52 96 76 43
Job categories - Carpenter - Concrete driller - Demolisher - Tuck pointer, carver / grinder				22 27 26 25
Exposure data Respirable dust > 5mg/m³ exposure limit α-quartz > 0,075 mg/m³ exposure limit				12 60

General response

	%
If best practices available to effectively control dust, why use it? - Better for health	5
- Less nuisance from dust	66
Reason NOT to use best practices to reduce dust exposure?	
 Not sufficient / effective 	21
- Technically difficult	36
- Takes too much time	15
Who has the most influence on you to use best practices to control dust?	
- Co-workers	5
- Myself	73
- Supervisor, manager	11
- Family	3

Scales used in preliminary analysis

Scale	Sub-scale	Content
Behaviour	Behaviour (control use) Behaviour (best practices)	Frequency of use of dust controls (self-reported) Effective use of controls & best practices (self-reported)
Intention	-	Intention to use controls & best practices
Attitudinal beliefs	Perceived effectiveness	Beliefs about effectiveness of controls / best practices
Social influence	Co-worker behaviour	Co-workers behaviour with regard to controls and best practices (self-reported)
Knowledge	-	Substance, exposure process, health effects, controls/practices
Background variables	Risk sensitivity Risk ignorance	Perceived susceptibility & severity of health outcomes Risk taking beliefs, risk propensity

Preliminary results (1)

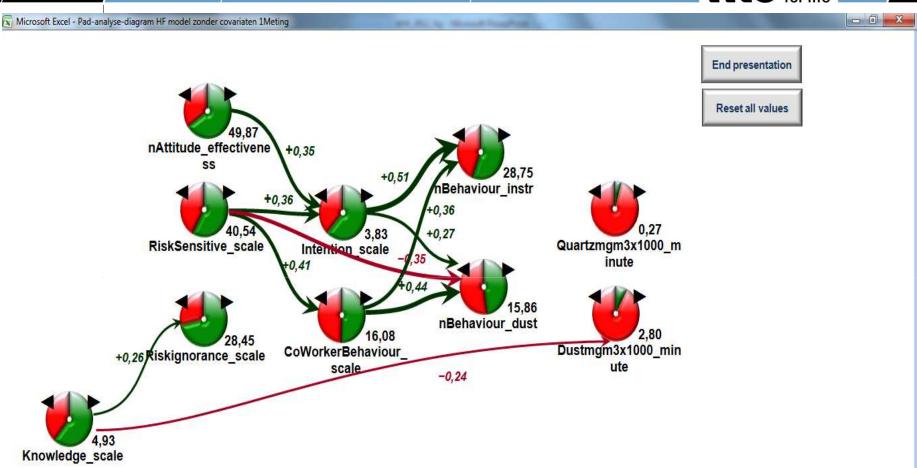
Scale (Cronbach alpha)	Coefficients (ß)		
Dependent variable	α-quartz exposure	respirable dust exposure	
Respirable dust exposure	0,21	-	
Behaviour (control use) (0,88)	0,30*	0,01	
Behaviour (best practices) (0,79)	-0,14	0,27	
Intention (0,92)	0,17	-0,13	
Beliefs in effectiveness of controls (0,75)	-0,01	0,03	
Risk sensitivity (0,70)	-0,10	-0,2	
Risk ignorance (0,68)	0,33**	-0,06	
Co-worker behaviour (0,67)	0,16	-0,06	
Knowledge	-0,04	-0,41***	
R ²	0,30	0,22	
Adjusted R ²	0,22	0,15	
SE of estimate	0,18	3,61	
F	3,77**	2,92**	

^{*}p<0,05; **p<0,01; ***p<0,001

Preliminary results (2)

Scale (Cronbach alpha)	Coefficients (ß)		
Dependent variable	Behaviour (control use#)	Behaviour (best practices#)	
Behaviour (control use) (0,88)		0,29**	
Behaviour (best practices) (0,79)	0,39**		
Intention (0,92)	0,08	0,43***	
Beliefs in effectiveness of controls (0,75)	0,05	0,06	
Risk sensitivity (0,70)	-0,15	0,02	
Risk ignorance (0,68)	-0,09	0,08	
Co-worker behaviour (0,67)	0,36**	0,19*	
Knowledge	0,13	-0,01	
R ²	0,43	0,57	
Adjusted R ²	0,38	0,53	
SE of estimate	5,3	7,7	
F	8,9***	15,7***	

^{*}p<0,05; **p<0,01; ***p<0,001


[#] self-reported

Numbers along arrows are standardized multiple regression coefficients (shown only for $|\beta| \ge 0.20$; p < 0.035). Dynamics, however, are based on all unstandardized regression coefficients (also when $|\beta| < 0.20$).

Conclusions (1)

- > Framework proven useful to identify behaviours and barriers / facilitators
- Importance of social influence, co-worker behaviour and role models also found in other studies (de Vries, 2000; Koppleaar et al, 2008; Nicol & Kennedy, 2008)
- More in-depth analyses required with all available data
 - detailed observation data, also include barriers & background variables

Conclusions (2)

- Possible suggestions for an intervention strategy, e.g.:
 - participative approach between workers and management (solving barriers of behaviour together)
 - one worker per working team proposed as coach / representative to influence behaviour
 - interactive and skills training (PIMEX real-time exposure video clips)
 - 'reminder, prompts, warning systems' (e.g. on tools)
- Challenge is to find an intervention strategy that is effective in short & long term, & maintenance of change

Thank you for your attention!

henkgoede@tno.nl